Template Engine
Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models.
Basic Template Structure
A basic Go template consists of three main parts:
- Layout: The overall structure of the template.
- Variables: Placeholders for dynamic data that will be replaced with actual values when the template is rendered.
- Functions: Custom functions or logic that can be used to manipulate the template's content.
Here's an example of a simple chat template:
{{- range .Messages }}
{{ .Role }}: {{ .Content }}
{{- end }}
In this example, we have:
- A basic messages structure (layout)
- Three variables:
Messages
,Role
, andContent
(variables) - A custom function (action) that iterates over an array of items (
range .Messages
) and displays each item
Adding templates to your model
By default, models imported into Ollama have a default template of {{ .Prompt }}
, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models.
Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model.
To add templates in your model, you'll need to add a TEMPLATE
command to the Modelfile. Here's an example using Meta's Llama 3.
FROM llama3
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>
{{- end }}
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ .Content }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>
"""
Variables
System
(string): system prompt
Prompt
(string): user prompt
Response
(string): assistant response
Suffix
(string): text inserted after the assistant's response
Messages
(list): list of messages
Messages[].Role
(string): role which can be one of system
, user
, assistant
, or tool
Messages[].Content
(string): message content
Messages[].ToolCalls
(list): list of tools the model wants to call
Messages[].ToolCalls[].Function
(object): function to call
Messages[].ToolCalls[].Function.Name
(string): function name
Messages[].ToolCalls[].Function.Arguments
(map): mapping of argument name to argument value
Tools
(list): list of tools the model can access
Tools[].Type
(string): schema type. type
is always function
Tools[].Function
(object): function definition
Tools[].Function.Name
(string): function name
Tools[].Function.Description
(string): function description
Tools[].Function.Parameters
(object): function parameters
Tools[].Function.Parameters.Type
(string): schema type. type
is always object
Tools[].Function.Parameters.Required
(list): list of required properties
Tools[].Function.Parameters.Properties
(map): mapping of property name to property definition
Tools[].Function.Parameters.Properties[].Type
(string): property type
Tools[].Function.Parameters.Properties[].Description
(string): property description
Tools[].Function.Parameters.Properties[].Enum
(list): list of valid values
Tips and Best Practices
Keep the following tips and best practices in mind when working with Go templates:
- Be mindful of dot: Control flow structures like
range
andwith
changes the value.
- Out-of-scope variables: Use
$.
to reference variables not currently in scope, starting from the root - Whitespace control: Use
-
to trim leading ({{-
) and trailing (-}}
) whitespace
Examples
Example Messages
ChatML
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ else }}
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
Example Tools
Tools support can be added to a model by adding a {{ .Tools }}
node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks.
Mistral
Mistral v0.3 and Mixtral 8x22B supports tool calling.
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}</s>
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}}
{{- end }}]</s>
{{- end }}
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
{{- end }}
{{- end }}
Example Fill-in-Middle
Fill-in-middle support can be added to a model by adding a {{ .Suffix }}
node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models.
CodeLlama
CodeLlama 7B (opens in a new tab) and 13B (opens in a new tab) code completion models support fill-in-middle.
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
[!NOTE] CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
Codestral
Codestral 22B (opens in a new tab) supports fill-in-middle.
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}